Thesis presented December 12, 2014
Abstract: This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each objet that normally compose a large cryorefrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W@1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station.
Keywords: Cryogenics, Energetics, Control systems
On-line thesis.